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Abstract

We derive Cayley’s type conditions for periodical trajectories for the billiard within an ellipsoid
in the Lobachevsky space. It appears that these new conditions are of the same form as those
obtained before for the Euclidean case. We explain this coincidence by using theory of geodesically
equivalent metrics and show that Lobachevsky and Euclidean elliptic billiards can be naturally
considered as a part of a hierarchy of integrable elliptical billiards.
© 2002 Elsevier Science B.V. All rights reserved.

MSC:70H06; 53D25

Subj. Class:Geometry of integrable systems; Dynamical systems

Keywords:Integrable billiards; Poncelet’s theorem; Cayley’s condition; Spectral curve; Geodesic hierarchy;
Separable perturbation

1. Introduction

We start with the following well-known integrable mechanical system: motion of a free
particle within an ellipsoid in the Euclidean space of any dimensiond. On the boundary, the
particle obeys the billiard law. Integrability of the system is related to classical geometrical
properties of elliptical billiards: the Chasles, Poncelet and Cayley theorems. According to
the Chasles theorem[1] every line in this space is tangent tod − 1 quadrics confocal to
the outer ellipsoid. Even more, all segments of the particle’s trajectory are tangent to the
samed−1 quadrics[26]. The Poncelet theorem[13,22,28]put some light on closed billiard
trajectories:there exists a closed trajectory withd − 1 given confocal caustics if and only
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if infinitely many such trajectories exist, and all of them have the same period. Since the
periodicity of a billiard trajectory depends only on its caustic surfaces, it is a natural question
to find an analytical connection between them and corresponding period.

The Poncelet theorem, as one of the highlights of the 19th century projective geometry,
attracted the attention of Arthur Cayley for several years (see[7–12]). In [8], Cayley found
the analytical condition for caustic conics in the Euclidean plane case. The classical and
algebro-geometric proofs of Cayley’s theorem can be found in Lebesgue’s book[28] and
Griffiths and Harris paper[23], respectively. The generalisation is established by Dragović
and Radnovíc for anyd [18,19]. This generalisation was done by use of the Veselov–Moser
discrete quadraticL − A pair for the classical Heisenberg magnetic model[32]. The in-
tegrability of elliptical billiard systems in the Lobachevsky space was proved by Veselov
in [38]. There, Veselov used discrete linearL − A pair, which is quite different from the
one used in the Euclidean case. The starting point of this paper is derivation of Cayley’s
type conditions for the Lobachevsky billiard and our observation that these new conditions
coincide with those obtained in[18,19] for the Euclidean case (Section 3). We found a
natural way to explain this coincidence and it is related to the recently developed integra-
bility approach in the theory of geodesically equivalent metrics[29,35]. Both Lobachevsky
and Euclidean elliptic billiards can be naturally considered as members of a hierarchy of
integrable elliptical billiards (Section 4). In the conclusion of this section, we present some
properties of the Laurent polynomial integrable potential perturbations of those separable
systems, continuing the study of such systems which started with[14], see also[15–17,24].

2. Basic notions on billiard systems

Let (Q, g) be ad-dimensional Riemannian manifold and letD ⊂ Q be a domain with
a smooth boundaryΓ . Let π : T ∗Q → Q be a natural projection and letg−1 be the
contravariant metric on the cotangent bundle, in coordinates

|p| =
√
g−1(p, p) =

√
gijpipj, p ∈ T ∗

x Q.

Consider thereflection mapping

r : π−1Γ → π−1Γ, p− �→ p+,

which associates the covectorp+ ∈ T ∗
x Q, x ∈ Γ to a covectorp− ∈ T ∗

x Q such that the
following conditions hold:

|p+| = |p−|, p+ − p− ⊥ Γ. (1)

A billiard in D is a dynamical system with the phase spaceM = T ∗D whose trajectories
are geodesics given by the Hamiltonian equations

ṗ = −∂H

∂x
, ẋ = ∂H

∂p
, H(p, x) = 1

2
g−1
x (p, p), (2)

reflected at pointsx ∈ Γ according to the billiard law:r(p−) = p+. Herep− andp+ denote
the momenta before and after the reflection. If some potential force fieldV(x) is added than
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the system is described with the same reflection law(1) and Hamiltonianequations (2)with
the HamiltonianH(p, x) = (1/2)g−1

x (p, p)+V(x). A functionf : T ∗Q → R is anintegral
of the billiard system if it commutes with the Hamiltonian ({f,H} = 0) and does not change
under the reflection (f(x, p) = f(x, r(p)), x ∈ Γ ). The billiard iscompletely integrable in
the sense of Birkhoffif it hasd integrals polynomial in the momenta, which are in involution,
and almost everywhere independent (see[26]). The classical integrable examples, with
smooth boundary, are billiards inside ellipsoids on the Euclidean and hyperbolic spaces and
spheres, with integrals quadratic in the velocities[26]. These systems can be also considered
as discrete integrable systems[37,38]. The explicit integrations in terms of theta-functions
are performed by Veselov[37,38], Moser and Veselov[32], and Fedorov[20].

3. Poncelet theorem and Cayley’s condition for the billiard in
the Lobachevsky space

Veselov proved the integrability of the billiard system within an ellipsoid in the
Lobachevsky space in[38]. He showed that its motion corresponds to certain translations
of the Jacobi variety of some hyperelliptic curve and gave explicit formulae of the motion
in terms of theta-functions. The aim of this section is to find an analogue of Poncelet’s and
Cayley’s theorem[8] for the billiard motion within an ellipsoid in the Lobachevsky space.

3.1. Integration of the billiard motion in the Lobachevsky space: Poncelet theorem

For a brief account of Veselov’s results on the billiard in the Lobachevsky space[38],
let us consider the(d + 1)-dimensional Minkowski spaceV = R

d,1 with the symmetric
bilinear form:

〈ξ, η〉 = −ξ0η0 + ξ1η1 + · · · + ξdηd.

One sheet of the hyperboloid〈ξ, ξ〉 = −1 with the induced metric is a model of the
d-dimensional Lobachevsky spaceH

d . An ellipsoidΓ in this space is determined by the
equation

Γ =
{
ξ ∈ H

d,− ξ2
0

a0
+ ξ2

1

a1
+ · · · + ξ2

d

ad
= 0

}
, (3)

with a0 > a1 ≥ a2 ≥ · · · ≥ ad > 0. All segments of the billiard trajectory within this
ellipsoid are tangent tod − 1 confocal quadric surfaces (including multiplicity), fixed for
a given trajectory (Theorem 3 in[38]). Denote byµi, i = 1, . . . , d − 1 the numbers such
that the equations of these caustics are:

− x2
0

a0 − µi

+ x2
1

a1 − µi

+ · · · + x2
d

ad − µi

= 0 (1 ≤ i ≤ d − 1). (4)

Then the points of reflection from the boundaryΓ correspond to the shiftDk+1 = Dk +
Q− − Q+ on the Jacobi variety of the spectral curveC

C : (µ − a0) · · · (µ − ad) = c · λ2(µ − µ1) · · · (µ − µd−1), (5)
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wherec is a constant, andQ+,Q− are the points on the curveC overµ = 0. (See Theorem
2 of [38]. The curveC is the spectral curve of theL − A pair considered there.) Let
us note that Veselov considered only the case of the regular (hyperelliptic) curveC [38].
However, his consideration holds for the singular case, too. Suppose a periodical billiard
trajectory inside the ellipsoidΓ in the Lobachevsky space is given. All trajectories with
the same caustics have the same spectral curve. If the period of the given trajectory isn,
thenn(Q+ − Q−) = 0 on Jac(C), and vice versa. Thus, all these trajectories close aftern

bounces. Therefore, Poncelet’s-type theorem for the billiard in the Lobachevsky space is
derived from Veselov’s results.

Proposition 1. Suppose a periodical billiard trajectory inside an ellipsoid in the Loba-
chevsky space is given. Then any billiard trajectory which shares the same caustic quadrics
is also periodical, with the same period.

3.2. Cayley’s conditions—regular spectral curve

Assume that all constantsa0, a1, . . . , ad , µ1, . . . , µd−1 are mutually different. Then the
spectral curveC is hyperelliptic. Cases when some of them coincide are discussed in the next
subsection. To establish an analytical condition on a trajectory to be periodic with period
n, we need to find out when the divisorsnQ+ andnQ− on the spectral curve are equivalent.

Lemma 1. Let the curve C be given by

y2 = (x − x1) · · · (x − x2g+2), (6)

with all xi mutually different and not equal to0, andQ+, Q− the two points on C over the
pointx = 0. Then nQ+ ≡ nQ− is equivalent to

rank



Bg+2 Bg+3 · · · Bn+1

Bg+3 Bg+4 · · · Bn+2

· · · · · · · · · · · ·
Bg+n · · · · · · B2n−1


 < n − g and n > g, (7)

wherey = √
(x − x1) · · · (x − x2g+2) = B0 + B1x + B2x

2 + · · · is the Taylor expansion
around the pointQ−.

Proof. C is a hyperelliptic curve of genusg. The relationnQ+ ≡ nQ− means that there
exists a meromorphic function onC with a pole of ordern at the pointQ+, a zero of the
same order atQ− and neither other zeros nor poles. Denote byL(nQ+) the vector space of
meromorphic functions onC with a unique poleQ+ of order at mostn. SinceQ+ is not a
branching point on the curve, dimL(nQ+) = 1 for n ≤ g, and dimL(nQ+) = n − g + 1,
for n > g. In the casen ≤ g, the spaceL(nQ+) contains only constant functions, and the
divisorsnQ+ andnQ− cannot be equivalent. Ifn ≥ g + 1, we choose the following basis
for L(nQ+):

1, f1, . . . , fn−g,
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where

fk = y − B0 − B1x − · · · − Bg+k−1x
g+k−1

xg+k
.

Thus,nQ+ ≡ nQ− if there is a functionf ∈ L(nQ+) with a zero of ordern atQ−, i.e., if
there exist constantsα0, . . . , αn−g, not all equal to 0, such that

α0 + α1f1(Q−) + · · ·αn−gfn−g(Q−) = 0,

α1f
′
1(Q−) + · · ·αn−gf

′
n−g(Q−) = 0,

...

α1f
(n−1)
1 (Q−) + · · ·αn−gf

(n−1)
n−g (Q−) = 0.

Existence of a non-trivial solution to this system of linear equations is equivalent to the
condition(7). �

Introducing new coordinatesx = µ, y = √
cλ(µ − µ1) · · · (µ − µd−1), the spectral

curve(5) is transformed to

y2 = (x − a0) · · · (x − ad)(x − µ1) · · · (x − µd−1), (8)

and we obtain the following theorem.

Theorem 1. The condition of a billiard trajectory inside the ellipsoid(3) in the d-dimen-
sional Lobachevsky space, with non-degenerate caustics(4), to be periodic with period
n ≥ d is

rank




Bn+1 Bn · · · Bd+1

Bn+2 Bn+1 · · · Bd+2

· · · · · · · · · · · ·
B2n−1 B2n−2 · · · Bn+d−1


 < n − d + 1,

where
√
(x − a0) · · · (x − ad)(x − µ1) · · · (x − µd−1) = B0 +B1x+B2x

2 + · · · . There is
no such trajectories with period less than d.

3.3. Cases of singular spectral curve

When alla0, a1, . . . , ad, µ1, . . . , µd−1 are mutually different, then the curve(5) has no
singularities in the affine part. However, singularities appear in the following three cases
and their combinations:

(i) ai = µj for somei, j. The spectral curve(5) decomposes into a rational and a hyper-
elliptic curve. Geometrically, this means that the caustic corresponding toµi degen-
erates into hyper-planexi = 0. The billiard trajectory can be asymptotically tending
to that hyper-plane (and therefore cannot be periodic), or completely placed in this
hyper-plane. Therefore, the closed trajectories appear when they are placed in a coor-
dinate hyper-plane. Such motion can be discussed like in the case of dimensiond − 1.
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(ii) ai = aj for somei �= j. The ellipsoid(3) is symmetric.
(iii) µi = µj for somei �= j. The billiard trajectory is placed on the corresponding confocal

quadric hyper-surface.1

In the cases (ii) and (iii) the spectral curveC is a hyperelliptic curve with singularities. In
spite of their different geometrical nature, they both need the same analysis of the condition
nQ+ ≡ nQ− for the singular curve(5).

Lemma 2. Let the curve C be given byy2 = (x− x1) · · · (x− x2g+2), with all xi different
from 0, andQ+, Q− the two points on C over the pointx = 0. Then nQ+ ≡ nQ− is
equivalent to(7) wherey = √

(x − x1) · · · (x − x2g+2) = B0 + B1x + B2x
2 + · · · is the

Taylor expansion around the pointQ−.

Proof. Suppose that, amongx1, . . . , x2g+2, only x2g+1 andx2g+2 have same values. Then
(x2g+1,0) is an ordinary double point onC. The normalisation of the curveC is the pair
(C̃, π), whereC̃ is the curve given by

C̃ : ỹ2 = (x̃ − x1) · · · (x̃ − x2g),

andπ : C̃ → C is the projection:

(x̃, ỹ)
π�→(x = x̃, y = (x̃ − x2g+1)ỹ).

The genus of̃C isg−1. The relationnQ+ ≡ nQ− is equivalent to existence of a meromorphic
functionf on C̃, f ∈ L(nQ̃+), with a zero of ordern at Q̃−, andf(A) = f(B), where
Q̃+, Q̃− are the two points over̃x = 0, andA,B are overx̃ = x2g+1. For n ≤ g − 1,
dimL(nQ̃+) = 1, and this space contains only constant functions. Forn ≥ g, we can
choose the following basis forL(nQ̃+):

1, f0, f1 ◦ π, . . . , fn−g ◦ π.
fk are as inLemma 1for k > 0, and

f0 = ỹ − B̃0 − B̃1x̃ − · · · − B̃g−1x̃
g−1

x̃g
,

whereỹ = √
(x̃ − x1) · · · (x̃ − x2g) = B̃0 + B̃1x̃ + B̃2x̃

2 + · · · is the Taylor expansion
around the pointQ̃−. Sincef0 is the only element of the basis with different values in
the pointsA andB, we obtain thatnQ̃+ ≡ nQ̃− is equivalent to(7). Cases whenC
has more singularities, or singular points of higher order, can be discussed in the similar
manner. �

Immediate consequence ofLemma 2is thatTheorem 1can be applied not only for the
case of the non-singular spectral curve, but in the cases (ii) and (iii) too. Therefore, the
following interesting property holds.

1 We learned about its geometric significance from Prof. Yurij Fedorov.
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Theorem 2. If the billiard trajectory within an ellipsoidΓ in d-dimensional Lobachevsky
space is periodic with periodn < d, then it is placed in one of the n-dimensional planes of
symmetry of the ellipsoid.

This property can be seen easily ford = 3.

Example 1. Consider the billiard motion in an ellipsoid in the three-dimensional space,
with µ1 = µ2, when the segments of the trajectory are placed on generatrices of the
corresponding quadric surface confocal to the ellipsoid. If there existed a periodic trajectory
with periodn = d = 3, the three bounces would have been coplanar, and the intersection
of that plane and the quadric would have consisted of three lines, which is impossible. It is
obvious that any periodic trajectory with periodn = 2 is placed along one of the axes of
the ellipsoid. So, there is no periodic trajectories contained in a confocal quadric surface,
with period less or equal to 3.

4. Hierarchy of integrable elliptical billiards

4.1. The Beltrami–Klein model of the Lobachevsky space

Note first that Cayley’s type conditions for the Lobachevsky billiard fromSection 3
are of the same form as those obtained in[18,19] for the Euclidean case, although the
L − A pairs used there are quite different. There is a natural way to explain this coinci-
dence. We use the Beltrami–Klein model of the Lobachevsky spaceH

d . The coordinate
transformation

y1 = ξ1

ξ0
, . . . , yd = ξd

ξ0

maps the Lobachevsky space, modeled as a pseudosphere of the Minkowski space, to the
Beltrami–Klein model within the unit sphere inRd [38]. Now, after appropriate linear
changing of coordinatesx1 = α1y1, . . . , xd = αdyd we can obtain the Beltrami–Klein
model inside the ellipsoidΛ:

Λ =
{
x = (x1, . . . , xd) ∈ R

d,
x2

1

b1
+ x2

2

b2
+ · · · + x2

d

bd
= 1

}
,

such that the ellipsoid(3) in new coordinates is confocal toΛ. Then its equation can be
written in the form:

Γ =
{
x ∈ R

d,
x2

1

b1 − c
+ x2

2

b2 − c
+ · · · + x2

d

bd − c
= 1

}
,

where 0< c < bi, i = 1, . . . , d. The hyperbolic metric withinΛ is given by (for example,
see[34]):
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dḡ2 = 1

b1 · b2 · · · bd · f 2

(
f

(
dx2

1

b1
+ · · · + dx2

d

bd

)
+
(
x1 dx1

b1
+ · · · + xd dxd

bd

)2
)
,

f = 1 −
(
x2

1

b1
+ x2

2

b2
+ · · · + x2

d

bd

)
.

The metric d̄g2 can be written in the matrix form as dḡ2 = 〈Π dx,dx〉, where dx =
(dx1, . . . ,dxd),

Π = 1

detB · f 2
( f B−1 + B−1x ⊗ B−1x),

B = diag(b1, . . . , bd), and〈·, ·〉 is the Euclidean scalar product. The hyperbolic metric has
the same geodesics, considered as unparametrised curves, as the Euclidean metric dg2 =
dx2

1 +dx2
2 +· · ·+dx2

d . Suppose thatb1 > b2 > · · · > bd . The standard elliptic coordinates
λ1, . . . , λd in R

d (b1 > λ1 > b2 > λ2 > · · · > λd−1 > bd > λd) are defined as solutions
of the equation:

γ(λ) = x2
1

b1 − λ
+ x2

2

b2 − λ
+ · · · + x2

d

bd − λ
= 1.

The direct verification shows that the metric dḡ2, as well as the Euclidean metric dg2,
is orthogonally separable in the elliptic coordinates and geodesic flows can be integrated
by the theorem of Stäckel. This means that hypersurfacesλi = const. of the coordinate
systemλ1, . . . , λd are orthogonal to each other and the corresponding Hamilton–Jacobi
equations for the Hamiltonian of the geodesic flows have complete solutions of the form
S(λ1, . . . , λd, c1, . . . , cd) = S1(λ1, c1)+· · ·+Sn(λd, cd) (see[2,3]and references therein).
Consider the billiard in the domainD bounded by the ellipsoidΓ . In elliptic coordinates,
the boundary of the ellipsoid is given by the equationλd = c and the reflection map, both
for the Euclidean and Lobachevsky metrics, is given by

(λ1, λ2, . . . , λd−1, c, pλ1, pλ2, . . . , pλd−1, pλd )

�→ (λ1, λ2, . . . , λd−1, c, pλ1, pλ2, . . . , pλd−1,−pλd ), (9)

where(λ, pλ) are canonical coordinates inT ∗
R
d . Such a simple form of the reflection map

is due to the fact thatΓ andΛ are confocal in the coordinatesx1, . . . , xd . Therefore we
have the following lemma.

Lemma 3. The billiards inside the ellipsoidΓ in the Euclidean and the Lobachevsky space,
modeled within the ellipsoidΛ, have the same trajectories up to reparametrisation.

Lemma 3provides the explanation for the coincidence of the Cayley’s conditions obtained
in the previous section and papers[18,19]. The above observation allows us to approach
to the problem of the integrability of elliptical billiards in a new way, using theory of
geodesically equivalent metrics.
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4.2. Geodesically equivalent metrics

Letg andḡ be Riemannian metrics ond-dimensional manifoldQ. The metricsg andḡ are
calledgeodesically equivalentif they have the same geodesics considered as unparametrised
curves. This is a classical subject studied by Beltrami, Dini, Levi-Civita, etc. in 19th century.
Recently, the new global understanding of the theory is developed in the framework of
integrable systems (see[5,29,35,36]and references therein). Having the metricsg andḡ,
define the(1,1)-tensor fieldL = L(g, ḡ) by

L =
(

det(ḡ)

det(g)

)1/(d+1)

ḡ−1g.

Consider functions

Jl(p, x) = g−1
x (Slp, p) =

∑
j,k,i

(Sl)
i
jg

jkpipk, (10)

where(1,1) tensorsSk are given by the following formula:

{det(L + α Id)}(L + α Id)−1 = Sd−1α
d−1 + Sd−2α

d−2 + · · · + S0, α ∈ R.

If the metricsg andḡ are geodesically equivalent then functionsJl(p, x) are in involution
with respect to the canonical symplectic structure onT ∗Q. Moreover, if the eigenvalues
of L are all different at one point ofQ, then they are different almost everywhere and
the geodesic flows ofg and ḡ are completely integrable. The complete set of involutive
integrals for the first flow isJ0, J1, . . . , Jd−1 (see[29,35,36]). In this case we say thatg
and ḡ arestrictly non-proportional. The pairg, ḡ of geodesically equivalent Riemannian
metrics produces the family of geodesically equivalent Riemannian metricsgk, ḡk, k ∈ Z

given by the following formulas[35,36]:

gk(ξ, η) = g(Lkξ, η), ḡk(ξ, η) = g(Lkξ, η), k ∈ Z. (11)

The integrals of the geodesic flows of metricgk andḡk+2 canonically given by(10)coincide
[35]. Following [5] we call (11) Topalov–Sinjukov hierarchyof Riemannian metrics on
Q. The nice geometrical interpretation of geodesical equivalence is done by Bolsinov and
Matveev[5]. They proved thatgandḡare geodesically equivalent if and only ifL is a Benenti
tensor field for the metricg [3,5]. This implies that ifg andḡ are strictly non-proportional
than all metricsgk, ḡk are orthogonally separable in the same coordinates and geodesic
flows can be integrated by the theorem of Stäckel[5].

4.3. Hierarchy of integrable elliptical billiards

Now we shall apply the general construction described in the previous section to the
Euclidean dg2 and Lobachevsky metrics dḡ2 inside the ellipsoidΛ. Note that this natural
geodesical equivalence is a slight modification of the geodesical equivalence studied by
Topalov in[36]. Takingb = B, ā = √−1x, from Lemma 7 of[36] we are getting that
(1,1) tensor fieldL has the following matrix form:

L = L(dg2,dḡ2) = (detΠ)1/(d+1)Π−1 = B − x ⊗ x.



230 V. Dragović et al. / Journal of Geometry and Physics 47 (2003) 221–234

Therefore we have the Topalov–Sinjukov hierarchy of strictly non-proportional Riemannian
metrics withinΛ given by

dg2
k = 〈(B − x ⊗ x)k dx,dx〉, dḡ2

k = 〈Π(B − x ⊗ x)k dx,dx〉. (12)

The corresponding geodesic flows are completely integrable. The integrals of the geodesic
flow of the metrics dg2

k and d̄g2
k+2 are:

Jki (p, x) = 〈Si(B − x ⊗ x)−kp, p〉, (13)

where

{det(B − x ⊗ x + α Id)}(B − x ⊗ x + α Id)−1

= detBα((1 − 〈B−1
α x, x〉)B−1

α + B−1
α ⊗ B−1

α ) = Sd−1α
d−1 + · · · + S0, (14)

p = (p1, . . . , pd) ∈ T ∗
x R

d is the canonical momentum in Euclidean coordinatesx =
(x1, . . . , xd), Bα = diag(b1 + α, . . . , bd + α) andα is a real parameter. Fork = 0 these
functions are defined on the wholeT ∗

R
d and coincide with commuting functions given

by Moser in [31]. Consider the billiards in the domainD bounded by the ellipsoidΓ
with metrics(12). According to[5] all metrics(12)are orthogonally separable in elliptical
coordinates. This implies that the reflection map is the same for all metrics and in elliptic
coordinates has the form(9). Moreover, since integralsJki (p, x) are diagonal in elliptic
coordinates, we have that they are not just integrals of the geodesic flows of metrics dg2

k

and d̄g2
k+2, but also integrals of the corresponding billiard systems inside ellipsoidΓ (see

[26, pp. 133–134]). Thus we get the following general statement.

Theorem 3. The billiard systems inside ellipsoidΓ with the Riemannian metricsdg2
k , dḡ2

k

given by(12) are completely integrable for allk ∈ Z. In particular, the elliptical billiards
in the Euclidean and hyperbolic spaces are completely integrable.

Since the reflection mapr is the same for the whole hierarchy, applying Proposition 3 of
[35], we get the following corollary.

Corollary 1. The billiard systems for the given hierarchy have isomorphic Liouville folia-
tions ofT ∗D/r.

Remark 1. Matveev and Topalov[29] and Tabachnikov[34] proved that ellipsoid

Λ̃ =
{
x = (x1, x2, . . . , xd+1) ∈ R

d+1,
x2

1

b1
+ x2

2

b2
+ · · · + x2

d+1

bd+1
= 1

}

admits non-trivial geodesic equivalence between the standard metric and the metric

1

b1 · b2 · · · bd+1 · ((x2
1/b1) + (x2

2/b2) + · · · + (x2
d+1/bd+1))

×
(

dx2
1

b1
+ dx2

2

b2
+ · · · + dx2

d+1

bd+1

)∣∣∣∣∣
Λ̃

.
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The Euclidean and the Lobachevsky metrics within ellipsoidΛ can be seen as limits of the
given metrics asbd+1 tends to zero.

4.4. Integrable potential perturbations

We shall say that the potentialV(x) isseparable in the elliptic coordinatesλ1, . . . , λd if the
Hamilton–Jacobi equation for the Hamiltonian(1/2)(p2

1 + · · · +p2
d)+V(x) can be solved

by separation of variables in elliptic coordinates. This definition, in a more geometrical
fashion, can be found in[2,3]. The potential of the elastic force is an example. The potential
V(x) is separable in the elliptic coordinates onR

d if and only if V(x) is a solution of the
linear system of partial differential equations

(bi − bj)
∂2V

∂xi∂xj
+
(
xi

∂

∂xj
− xj

∂

∂xi

)(
2V +

d∑
k=1

xkxk
∂V

∂xk

)
= 0, (15)

for i �= j (see[2,30]). We shall denote the Hamiltonians of the geodesic flows of metrics
dg2

k and d̄g2
k by Hk

0(p, x) andH̄k
0(p, x), respectively. Suppose thatV(x) is a solution of

(15). Then from[5] follows that Hamiltonian systems with Hamiltonian functions

Hk(p, x) = Hk
0(p, x) + V(x), H̄k(p, x) = H̄k

0(p, x) + V(x) (16)

are completely integrable, and can be solved by separation of variables in elliptic coordinates
for all k. There is a complete set of commuting integrals of the form

Iki (p, x) = Jki (p, x) + fi(x), i = 1, . . . , d,

for each HamiltonianHk(p, x) whereJki (p, x) is given by(13). The functionsfi(x) do
not depend ofk. They are solutions of the equations∇fi(x) = Si ∇V(x), where∇f =
(∂1f, . . . , ∂nf) andSi are given by(14). Similar statement holds for Hamiltonian systems
with HamiltoniansH̄k(p, x). Consider the billiard systems with Hamiltonians(16) within
the ellipsoidΓ . From the choice ofIki (p, x) we have that these functions do not change
under the reflection. Thus we get the following corollary.

Corollary 2. Suppose thatV(x) is a solution of(15). Then the billiard systems with Hamil-
tonians(16)within the ellipsoidΓ are completely integrable.

Let us consider the solution ofequations (15)in the form of Laurent polynomials

V(x) =
∑

k−≤i1,...,id≤k+
pi1,...,id x

i1
1 x

i2
2 · · · xidd , k−, k+ ∈ Z. (17)

Suppose that Laurent polynomial(17)is a solution of(15). Then coefficientspi1,...,id satisfy
the following system of difference equations:

(bk − bl)ikilpi1,...,id

= (i1 + · · · + id)(ilpi1,...,ik−1,ik−2,ik+1,...,id − ikpi1,...,il−1,il−2,il+1,...,id ). (18)
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Such potential perturbations are described ford = 2 in [14] (see also[15,24]) and ford = 3
in [17]. In general, the linear space of Laurent polynomial solution of(15) has a basis of
the form

Vk = Vk(x1, . . . , xd), W i
k = 1

x2k
i

P i
k−1(x1, . . . , xd), i = 1, . . . , d, (19)

whereVk andPik are polynomials of degree 2k, k ≥ 0. The potentialsVk andW i
k, in elliptic

coordinates, correspond to the potentials

V(λ) =
d∑

j=1

v(λj)

Πl �=j(λj − λl)
,

with v(t) = ∑k
j=1 αjt

d−1+j andv(t) = ∑k
j=1 βj(t − ai)

−j, respectively.

Example 2. As an example, we write down a few of the basis potentials(19):

V1(x) =
∑
j

x2
j (Jacobi), V2(x) =

∑
j

bjx
2
j −


∑

j

x2
j




2

,

V3(x) =
∑
j

b2
jx

2
j − 2


∑

j

x2
j




2
∑

j

bjx
2
j


+


∑

j

x2
j




3

,

W i
1(x) = 1

x2
i

(Rosochatius), W i
2(x) = 1

x4
i


1 +

∑
j �=i

x2
j

bi − bj


 ,

W i
3(x) = 1

x6
i


1 +

∑
j �=i

(
2x2

j

bi − bj
+

x2
jx

2
i

(bi − bj)2

)
+
∑
j,k �=i

x2
jx

2
k

(bi − bj)2(bi − bk)2


 .

LetV(x) = ∑
p αpVp(x)be some separable polynomial potential. Consider billiard systems

with Hamiltonians(16). By the Maupertiues principle[1], for a given value of total energies
h, satisfying conditionh > maxx∈DV(x), the motions in the potential fieldV(x) insideΓ
are reduced to geodesical motions with metrics

(h − V(x))dg2
k, (h − V(x))dḡ2

k. (20)

It is clear that the billiard systems withinΓ with metrics(20)are integrable.
Concluding remarks: Theorem 3holds also if the boundary of the billiard is the union

of the confocal quadricsΓ = Γc1 ∪ Γc2 ∪ · · · ∪ Γcr , Γci = {x ∈ R
d, γ(ci) = 1}, or

more generally, if the billiard is constrained to some of confocal quadrics. The same results
can be formulated for billiards constrained on spheres by using geodesical equivalences
established in[29,35]. Then systems are orthogonally separable in the spherical elliptic
coordinates. Polynomial potentials separable in elliptic coordinates onR

d and spheresSd

are given by Bogoyavlenski[4] and Wojciechowski[39]. After Rosochatius’s potential
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V(x) = ∑d
i=1 αix

−2
i (see[33] and Appendix in[31]), particular examples of rational poten-

tials are found by Braden[6] and Wojciechowski[39]. Kalnins et al. described separable
rational potentials in terms of certain recurrence relations between potentials of different
degrees[25]. Recently, Fedorov integrated the elliptical billiard with the elastic potential
in the Euclidean space[21]. Dragovíc found the connection between the Laurent potential
perturbations of the elliptical billiards ford = 2 and the Appell hypergeometric functions
[16]. Also recently, the two-dimensional billiards with smooth boundary and additional
irreducible integrals of the third and fourth degree, with a help of the integrable cases of
Goryachev–Chaplygin and Kovalevskaya are given by Kozlova[27].
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