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Abstract

We derive Cayley’s type conditions for periodical trajectories for the billiard within an ellipsoid
in the Lobachevsky space. It appears that these new conditions are of the same form as those
obtained before for the Euclidean case. We explain this coincidence by using theory of geodesically
equivalent metrics and show that Lobachevsky and Euclidean elliptic billiards can be naturally
considered as a part of a hierarchy of integrable elliptical billiards.
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1. Introduction

We start with the following well-known integrable mechanical system: motion of a free
particle within an ellipsoid in the Euclidean space of any dimengi@n the boundary, the
particle obeys the billiard law. Integrability of the system is related to classical geometrical
properties of elliptical billiards: the Chasles, Poncelet and Cayley theorems. According to
the Chasles theorefi] every line in this space is tangentdo— 1 quadrics confocal to
the outer ellipsoid. Even more, all segments of the particle’s trajectory are tangent to the
samel — 1 quadric§26]. The Poncelet theorefh3,22,28]put some light on closed billiard
trajectoriesthere exists a closed trajectory with— 1 given confocal caustics if and only
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if infinitely many such trajectories exjgtnd all of them have the same peri&ince the
periodicity of a billiard trajectory depends only on its caustic surfaces, itis a natural question
to find an analytical connection between them and corresponding period.

The Poncelet theorem, as one of the highlights of the 19th century projective geometry,
attracted the attention of Arthur Cayley for several years [&e£2)). In [8], Cayley found
the analytical condition for caustic conics in the Euclidean plane case. The classical and
algebro-geometric proofs of Cayley’s theorem can be found in Lebesgue’d®®jo&nd
Griffiths and Harris papg23], respectively. The generalisation is established by Dragovi
and Radnowa for anyd [18,19] This generalisation was done by use of the Veselov—Moser
discrete quadrati€. — A pair for the classical Heisenberg magnetic mda@el. The in-
tegrability of elliptical billiard systems in the Lobachevsky space was proved by Veselov
in [38]. There, Veselov used discrete lindar- A pair, which is quite different from the
one used in the Euclidean case. The starting point of this paper is derivation of Cayley’s
type conditions for the Lobachevsky billiard and our observation that these new conditions
coincide with those obtained if18,19] for the Euclidean caseSéction 3. We found a
natural way to explain this coincidence and it is related to the recently developed integra-
bility approach in the theory of geodesically equivalent me{&i€35] Both Lobachevsky
and Euclidean elliptic billiards can be naturally considered as members of a hierarchy of
integrable elliptical billiards$ection 4. In the conclusion of this section, we present some
properties of the Laurent polynomial integrable potential perturbations of those separable
systems, continuing the study of such systems which started¥ithsee als§15-17,24]

2. Basic notionson billiard systems

Let (Q, g) be ad-dimensional Riemannian manifold and BtC Q be a domain with
a smooth boundary™. Let 7 : T*Q — Q be a natural projection and Igt'! be the
contravariant metric on the cotangent bundle, in coordinates

Ipl = \/gfl(p, p)= \/g”pfpj, peTQ.
Consider theeflection mapping
roa i > o7ln p— = pt,

which associates the covectpr. € T;Q, x € I' to a covectorp_ € T, Q such that the
following conditions hold:

[p+|=Ip-1, p+—p- LI 1)

A billiard in D is a dynamical system with the phase spate= T* D whose trajectories
are geodesics given by the Hamiltonian equations
OH . 0H

p=-"or i

1
: . H(p.) =387 (), 2
™ o (p, x) 58x (p. p) 3]

reflected at points € I" according to the billiard law:(p_) = p.Herep_ andp, denote
the momenta before and after the reflection. If some potential forcefigdds added than
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the system is described with the same reflection(lBvand Hamiltoniarequations (2jvith

the HamiltoniarH(p, x) = (1/2)g;1(p, p)+V(x). Afunction f : T*Q — Risanintegral

of the billiard system if it commutes with the Hamiltonigrf,(H} = 0) and does not change
under the reflectionf(x, p) = f(x, r(p)), x € I'). The billiard iscompletely integrable in

the sense of Birkhafffit hasd integrals polynomial in the momenta, which are in involution,

and almost everywhere independent (§2@]). The classical integrable examples, with
smooth boundary, are billiards inside ellipsoids on the Euclidean and hyperbolic spaces and
spheres, with integrals quadratic in the velocif®8]. These systems can be also considered

as discrete integrable systef33,38]. The explicit integrations in terms of theta-functions

are performed by Veseld37,38], Moser and Veselof32], and Fedoroy20].

3. Poncelet theorem and Cayley’s condition for the billiard in
the L obachevsky space

Veselov proved the integrability of the billiard system within an ellipsoid in the
Lobachevsky space ii38]. He showed that its motion corresponds to certain translations
of the Jacobi variety of some hyperelliptic curve and gave explicit formulae of the motion
in terms of theta-functions. The aim of this section is to find an analogue of Poncelet’s and
Cayley’s theoreni8] for the billiard motion within an ellipsoid in the Lobachevsky space.

3.1. Integration of the billiard motion in the Lobachevsky space: Poncelet theorem

For a brief account of Veselov’s results on the billiard in the Lobachevsky dB8&te
let us consider théd + 1)-dimensional Minkowski spac¥ = R%! with the symmetric
bilinear form:

(&, m) = —Eomo+ &1 +--- +&ama.

One sheet of the hyperboloi@, &) = —1 with the induced metric is a model of the

d-dimensional Lobachevsky spai¥. An ellipsoid I" in this space is determined by the
equation

2 2 2

F:iéeHd,—E—o+s—l+-~-+§—d=0 , (3)

apg a1 aq

with ag > a1 > a2 > --- > ag > 0. All segments of the billiard trajectory within this

ellipsoid are tangent td — 1 confocal quadric surfaces (including multiplicity), fixed for

a given trajectory (Theorem 3 [88]). Denote byu;,i = 1, ...,d — 1 the numbers such
that the equations of these caustics are:
2 2 2
X X X
——0 4+ 1 4.4 "4 __0 A<i<d-1. 4)
ap— Wi a1 — [ aq — i

Then the points of reflection from the bounddrycorrespond to the shiiD, 1 = Dy +
Q_ — Q4 on the Jacobi variety of the spectral cutre

Ci(u—ag)-(—ag) =c- 22— p1)- (1 — Ha-1), 5)
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wherec is a constant, an@ ., Q_ are the points on the curéoveru = 0. (See Theorem

2 of [38]. The curveC is the spectral curve of thé — A pair considered there.) Let

us note that Veselov considered only the case of the regular (hyperelliptic) C(B&3.
However, his consideration holds for the singular case, too. Suppose a periodical billiard
trajectory inside the ellipsoid™ in the Lobachevsky space is given. All trajectories with
the same caustics have the same spectral curve. If the period of the given trajeatory is
thenn(Q+ — Q_) = 0 on Ja€C), and vice versa. Thus, all these trajectories close after
bounces. Therefore, Poncelet's-type theorem for the billiard in the Lobachevsky space is
derived from Veselov’s results.

Proposition 1. Suppose a periodical billiard trajectory inside an ellipsoid in the Loba-
chevsky space is given. Then any billiard trajectory which shares the same caustic quadrics
is also periodicalwith the same periad

3.2. Cayley’s conditions—regular spectral curve

Assume that all constands, a1, .. ., aq, 11, ..., wg—1 are mutually different. Then the
spectral curv€ is hyperelliptic. Cases when some of them coincide are discussed in the next
subsection. To establish an analytical condition on a trajectory to be periodic with period
n, we need to find out when the divisar®; andnQ_ on the spectral curve are equivalent.

Lemma 1. Letthe curve C be given by

Y= (= x1) - (x — x2g42), (6)
with all x; mutually different and not equal @ and O, Q_ the two points on C over the
pointx = 0. Then nQ. = nQ_ is equivalent to

Bg+2 Bg+3 cro Bpya
B B, -+ B

rank| §t3 Tstd "2 pn—g and n>g, 7)
Bgin -+ -+ By

wherey = \/(x —x1)- - (x — x2¢42) = Bo+ Bix + Box? + - - - is the Taylor expansion
around the pointQ _.

Proof. C is a hyperelliptic curve of genug The relationrnQ; = nQ_ means that there
exists a meromorphic function aii with a pole of order: at the pointQ., a zero of the
same order aP_ and neither other zeros nor poles. Denotd yyQ, ) the vector space of
meromorphic functions o with a unique pole) ;. of order at mosk. SinceQ is not a
branching point on the curve, dil(nQ;) = 1 forn < g,and dimL(nQy) =n — g+ 1,
forn > g. Inthe case: < g, the spacd.(nQ,.) contains only constant functions, and the
divisorsnQ;. andnQ- cannot be equivalent. if > g + 1, we choose the following basis

for L(NQy):
19 fl’ ) fnfg’
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where
_ y—Bo—Bix— -+ — By qx$tEL
Je= X8tk :
Thus,nQ; = nQ_ if there is a functionf € L(nQ;) with a zero of order at Q0 _, i.e., if
there exist constantsg, . .., a,_g, Not all equal to 0, such that

ag+arfi(Q-) +--- an—gfn—g(Q—) =0,
QLI(Q) + -ty o (0-) =,

arf Q) + g SV (0-) = 0.

Existence of a non-trivial solution to this system of linear equations is equivalent to the
condition(7). O

Introducing new coordinates = u, y = /cA(u — 1) --- (0 — na—1), the spectral
curve(5) is transformed to
Y= (x—ag)(x—as)(x—pu1) - (x — pa-1), ®)

and we obtain the following theorem.
Theorem 1. The condition of a billiard trajectory inside the ellipsofd) in the d-dimen-

sional Lobachevsky spacwith non-degenerate causti€8), to be periodic with period
n>dis

Byy1 B, te Biy1
rank| ~ "2 ntl 2 a1
Boy1 B2y—2 -+ Bpya-1

where/(x —ag) - -- (x —ag)(x — 1) - - - (x — g—1) = Bo+ B1x + Box2+....Thereis
no such trajectories with period less than d

3.3. Cases of singular spectral curve

When allag, a1, ..., aq, 11, - - ., ta—1 are mutually different, then the curgg) has no
singularities in the affine part. However, singularities appear in the following three cases
and their combinations:

(i) a; = njfor somei, j. The spectral curvéb) decomposes into a rational and a hyper-
elliptic curve. Geometrically, this means that the caustic corresponding degen-
erates into hyper-plang = 0. The billiard trajectory can be asymptotically tending
to that hyper-plane (and therefore cannot be periodic), or completely placed in this
hyper-plane. Therefore, the closed trajectories appear when they are placed in a coor-
dinate hyper-plane. Such motion can be discussed like in the case of dimérsibn
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(i) a; = a; for somei # j. The ellipsoid(3) is symmetric.
(i) w; = ujforsome # j. The billiard trajectory is placed on the corresponding confocal
quadric hyper-surfack.

In the cases (i) and (jii) the spectral cu@és a hyperelliptic curve with singularities. In
spite of their different geometrical nature, they both need the same analysis of the condition
nQ, = nQ_ for the singular curvgs).

Lemma 2. Letthe curve C be given t»? = (x —x1) - - - (x — x2¢42), With all x; different
from 0, and Q4+, Q_ the two points on C over the point = 0. Then nQ. = nQ_ is
equivalent to7) wherey = ./(x — x1) - -+ (x — x2¢42) = Bo + Bix + Box? + - - - is the
Taylor expansion around the poigt_.

Proof. Suppose that, among, ..., xa¢42, only xp¢1 andxz,, > have same values. Then
(x2¢+1, 0) is an ordinary double point o@. The normalisation of the curv€ is the pair

(C, ), whereC is the curve given by
C:3%=(F—x1)- (¥ — x29),
andr : C — Cis the projection:
X > (x =X,y = (¥ — x2641)7).

Thegenusof isg—1. TherelatiomQ, = nQ_ is equivalentto existence of ameromorphic
function f on C, f € L(nQ,), with a zero of order at O_, and f(A) = f(B), where
O+, O_ are the two points ove¥ = 0, andA, B are overk = xg.41. Forn < g — 1,
dimL(nQ4) = 1, and this space contains only constant functions./For g, we can
choose the following basis fdr(n Q+):

1,f0,f1071,...,fn_g07'[.

fx are as irLemma 1for k > 0, and

_5)—30—23156—”-—2?};_1563'_1

X8

fo

’

wherey = \/(F —x1) - -- (X — x2¢) = Bo + B1¥ + Bo¥% + --- is the Taylor expansion
around the poinD_. Since fj is the only element of the basis with different values in
the pointsA and B, we obtain thanQ, = nQ_ is equivalent to(7). Cases wherC

has more singularities, or singular points of higher order, can be discussed in the similar
manner. O

Immediate consequence bémma 2is thatTheorem Ican be applied not only for the
case of the non-singular spectral curve, but in the cases (ii) and (iii) too. Therefore, the
following interesting property holds.

1 We learned about its geometric significance from Prof. Yurij Fedorov.
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Theorem 2. If the billiard trajectory within an ellipsoid’™ in d-dimensional Lobachevsky
space is periodic with period < d, then it is placed in one of the n-dimensional planes of
symmetry of the ellipsoid

This property can be seen easily tbe= 3.

Example 1. Consider the billiard motion in an ellipsoid in the three-dimensional space,
with 1 = w2, when the segments of the trajectory are placed on generatrices of the
corresponding quadric surface confocal to the ellipsoid. If there existed a periodic trajectory
with periodn = d = 3, the three bounces would have been coplanar, and the intersection
of that plane and the quadric would have consisted of three lines, which is impossible. It is
obvious that any periodic trajectory with periad= 2 is placed along one of the axes of
the ellipsoid. So, there is no periodic trajectories contained in a confocal quadric surface,
with period less or equal to 3.

4. Hierarchy of integrable dlliptical billiards
4.1. The Beltrami—Klein model of the Lobachevsky space

Note first that Cayley’s type conditions for the Lobachevsky billiard frSection 3
are of the same form as those obtained18,19] for the Euclidean case, although the
L — A pairs used there are quite different. There is a natural way to explain this coinci-
dence. We use the Beltrami—Klein model of the Lobachevsky sHdcd@he coordinate
transformation

_& _ &
& €0

maps the Lobachevsky space, modeled as a pseudosphere of the Minkowski space, to the
Beltrami—Klein model within the unit sphere ®? [38]. Now, after appropriate linear
changing of coordinates; = wa1y1,...,xs = agyq wWe can obtain the Beltrami—Klein

model inside the ellipsoidi:

i <> YVd

2 2 2
X X X

A=x=(x,..., eRY, L 22 4 0d 9L
{x (x1 Xq) b1 ~|—b2 + + by

such that the ellipsoi€B) in new coordinates is confocal té. Then its equation can be
written in the form:

2 2 2
X X X
Fr={xerd L 4 2 4. .4 _"d _1},
I b1—c by—c by —c

where O< ¢ < b;,i =1, ...,d. The hyperbolic metric withim is given by (for example,
seg[34)):
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1 dx2 dx2 x10dxq xq dxg 2
dgl= — — 1,4 d .
¢ bl.bzwbd-fZ(f(bl+ T )T T

2 2 2
f:1_<ﬁ+ﬁ+...+xd).

b1 ' by ba

The metric ¢ can be written in the matrix form asg8l = (I7dx, dx), where d =
(dxq, ..., dxp),

n=———(fB 1+ B xe B,

TR f2( +B x®B "x)
B =diagbs, ..., by), and(-, -) is the Euclidean scalar product. The hyperbolic metric has
the same geodesics, considered as unparametrised curves, as the Euclideangfetric d
dx? 4 dxZ + - - - + dx2. Suppose that; > by > --- > by. The standard elliptic coordinates
A, ..o AgiNRY (by > A1 > by > A2 > -+ > Ag_1 > by > Ag) are defined as solutions
of the equation:

2 2 2

X1 X2 o A
bl—k+b2—)»+ +bd—)»_

y(A) =

The direct verification shows that the metrig?d as well as the Euclidean metrigd

is orthogonally separable in the elliptic coordinates and geodesic flows can be integrated
by the theorem of Stéckel. This means that hypersurfaces const of the coordinate
systemas, ..., Ay are orthogonal to each other and the corresponding Hamilton—Jacobi
equations for the Hamiltonian of the geodesic flows have complete solutions of the form
SA1, ..., g, €1, ..., ¢cq) = S1(A1, c1)+- - -+S, (Mg, cg) (sed2,3]and references therein).
Consider the billiard in the domaiP bounded by the ellipsoid’. In elliptic coordinates,

the boundary of the ellipsoid is given by the equatign= ¢ and the reflection map, both

for the Euclidean and Lobachevsky metrics, is given by

()\’lv )\'27 s )\'d—]_’ C, Pr1s Pros -+ -5 Phg_1s pkd)
= ()"l’ )"27 ) )"dflv c, p)\.17 p)\.za ) p)L(],]J _p)\d)5 (9)

where(x, p,) are canonical coordinates THR?. Such a simple form of the reflection map
is due to the fact thaf” and A are confocal in the coordinates, ..., x;. Therefore we
have the following lemma.

Lemma 3. The billiards inside the ellipsoidi' in the Euclidean and the Lobachevsky space
modeled within the ellipsoid, have the same trajectories up to reparametrisation

Lemma Jorovides the explanation for the coincidence of the Cayley’s conditions obtained
in the previous section and pap¢t$8,19] The above observation allows us to approach
to the problem of the integrability of elliptical billiards in a new way, using theory of
geodesically equivalent metrics.
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4.2. Geodesically equivalent metrics

Letg andg be Riemannian metrics @hdimensional manifold. The metricg andg are
calledgeodesically equivaleiftthey have the same geodesics considered as unparametrised
curves. Thisis a classical subject studied by Beltrami, Dini, Levi-Civita, etc. in 19th century.
Recently, the new global understanding of the theory is developed in the framework of
integrable systems (s¢g,29,35,36]and references therein). Having the metgcand g,
define the(, 1)-tensor fieldL = L(g, g) by

L= (@)
det(g)
Consider functions

Ji(p. %) = g (Sip. p) = Y _(SD'id* pip. (10)
Jiok,i

where(1, 1) tensorsS; are given by the following formula:
{detL + ol (L +ald) ™t = Sy_10? 1+ Sg_a® 24+ 8y, ack.

If the metricsg andg are geodesically equivalent then functiohép, x) are in involution
with respect to the canonical symplectic structureTdi. Moreover, if the eigenvalues
of L are all different at one point of), then they are different almost everywhere and
the geodesic flows of and g are completely integrable. The complete set of involutive
integrals for the first flow islp, J1, ..., Jy—1 (see[29,35,36). In this case we say that
and g arestrictly non-proportional The pairg, g of geodesically equivalent Riemannian
metrics produces the family of geodesically equivalent Riemannian mefigs, k € Z
given by the following formula$35,36}.

& =gLrem), & =glren, kel (11)

The integrals of the geodesic flows of metgicandg; 2 canonically given by10)coincide

[35]. Following [5] we call (11) Topalov—Sinjukov hierarchgf Riemannian metrics on

Q. The nice geometrical interpretation of geodesical equivalence is done by Bolsinov and
MatveeV5]. They proved that andg are geodesically equivalent if and onlyifs a Benenti
tensor field for the metrig [3,5]. This implies that ifg andg are strictly non-proportional

than all metricsgy, gx are orthogonally separable in the same coordinates and geodesic
flows can be integrated by the theorem of Sta¢kgl

4.3. Hierarchy of integrable elliptical billiards

Now we shall apply the general construction described in the previous section to the
Euclidean @2 and Lobachevsky metricszd inside the ellipsoidd. Note that this natural
geodesical equivalence is a slight modification of the geodesical equivalence studied by
Topalov in[36]. Takingh = B, a = +/—1x, from Lemma 7 of[36] we are getting that
(1, 1) tensor fieldL has the following matrix form:

L = L(dg? dg?) = (det¥Y“t V11 =B x@x
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Therefore we have the Topalov—Sinjukov hierarchy of strictly non-proportional Riemannian
metrics withinA given by

dg? = ((B — x ® )" dx, dx), dg? = (I(B — x ® x)* dx, dx). (12)

The corresponding geodesic flows are completely integrable. The integrals of the geodesic
flow of the metrics g7 and &2, , are:

JE(p, %) = (Si(B—x®@x)*p, p), (13)
where

{detB—x®x+ald)}(B—x®@x+ald)™t

=detB,((1— (B x, x)B; 1+ B;1 @ B;Y) = Sy10¥ 1+ -+ + S0, (14)
p = (p1,..., pa) € TR? is the canonical momentum in Euclidean coordinates
(x1,...,x4), By = diaglb1 + «, ..., by + @) andu is a real parameter. Far= 0 these

functions are defined on the whal&R¢ and coincide with commuting functions given

by Moser in[31]. Consider the billiards in the domaib bounded by the ellipsoid”

with metrics(12). According to[5] all metrics(12) are orthogonally separable in elliptical
coordinates. This implies that the reflection map is the same for all metrics and in elliptic
coordinates has the fori{®). Moreover, since integralsl."(p, x) are diagonal in elliptic
coordinates, we have that they are not just integrals of the geodesic flows of mggrics d
and (g,§+2, but also integrals of the corresponding billiard systems inside ellipsdgke

[26, pp. 133-134] Thus we get the following general statement.

Theorem 3. The billiard systems inside ellipsoid with the Riemannian metria:g,f, dg,f
given by(12) are completely integrable for akl € Z. In particular, the elliptical billiards
in the Euclidean and hyperbolic spaces are completely integrable

Since the reflection mapis the same for the whole hierarchy, applying Proposition 3 of
[35], we get the following corollary.

Corollary 1. The billiard systems for the given hierarchy have isomorphic Liouville folia-
tions of T*D/r.

Remark 1. Matveev and Topalof29] and Tabachnikoy34] proved that ellipsoid

3 x5 XG4
A= x=(x15x27""xd+1)ERd+l5_1+_2+"‘+_+=l
by b2 ba+1

admits non-trivial geodesic equivalence between the standard metric and the metric
1
by-by- b1 (x2/b1) + (x3/b2) + -+ + (x5, 1 /ba+1))

2

by by bat+1
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The Euclidean and the Lobachevsky metrics within ellipsbican be seen as limits of the
given metrics a$,.1 tends to zero.

4.4, Integrable potential perturbations

We shall say that the potentiglx) isseparable inthe elliptic coordinates, .. ., A4 ifthe
Hamilton—Jacobi equation for the Hamiltoniettﬁ)(p% + pﬁ) + V(x) can be solved
by separation of variables in elliptic coordinates. This definition, in a more geometrical
fashion, can be found if2,3]. The potential of the elastic force is an example. The potential
V(x) is separable in the elliptic coordinates BA if and only if V(x) is a solution of the
linear system of partial differential equations

Fav 3 9 d 1%
bi—b)— .2 ) 2v — =0, 15
(bi j) 3xl~3xj + <x1 axj Xj 3)Ci> ( + ];_xkxk 8xk> ( )

fori # j (see[2,30]). We shall denote the Hamiltonians of the geodesic flows of metrics
dg? and &2 by HE(p, x) and HE (p, x), respectively. Suppose thaitx) is a solution of
(15). Then from[5] follows that Hamiltonian systems with Hamiltonian functions

H*(p,x) = HS(p,x) + V(x),  H"(p,x) = HS(p, x) + V(x) (16)

are completely integrable, and can be solved by separation of variables in elliptic coordinates
for all k. There is a complete set of commuting integrals of the form

Fp,x) =JEp, 0+ fio), i=1,....4,

for each HamiltoniarH* (p, x) WhereJl."(p, x) is given by(13). The functionsf;(x) do
not depend ok. They are solutions of the equatioRsf;(x) = S; VV(x), whereV f =
(01f, ..., 9, ) andsS; are given by(14). Similar statement holds for Hamiltonian systems
with HamiltoniansH* (p, x). Consider the billiard systems with Hamiltoniafis) within

the ellipsoidI". From the choice of{‘(p, x) we have that these functions do not change
under the reflection. Thus we get the following corollary.

Corollary 2. Suppose tha¥(x) is a solution 0{15). Then the billiard systems with Hamil-
tonians(16) within the ellipsoidl” are completely integrable

Let us consider the solution efjuations (15 the form of Laurent polynomials

Vix) = Z 17,-1,_”,,-61)61.111522 .- ~x2’, k_,ky €Z. a7

k_<it,...ig<k4

Suppose that Laurent polynom{al7)is a solution of15). Then coefficientp;, . ;, satisfy
the following system of difference equations:

(bk — b)iriipiy,....iz
= (ll + -+ id)(ilpil,..‘,ikfl,ikfz,ikJFl,‘..,id - ikpil,..‘,il,]_,ilfz,iprl ,,,,, id)' (18)
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Such potential perturbations are describedifer 2 in[14] (see als$15,24)) and ford = 3
in [17]. In general, the linear space of Laurent polynomial solutiofil6) has a basis of
the form

. 1.
ZVk(xla'~'7-xd)a W]iz x_kazfl(xla-~-’xd)a i=1,...,d, (19)
i
whereV andP; are polynomials of degreek2k > 0. The potential3’, andW}, in elliptic
coordinates, correspond to the potentials
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with v(r) = Y% oot andu() = Z];:1 Bj(t — a;)~/, respectively.

Example 2. As an example, we write down a few of the basis poten{ibds:

2
Vi =Y %% (Jacob), Va0 = byl — (ZX?) :
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2 3
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Wi() = _?( +§ (b —b; " o _bpz) ’ Z (b= b2(bi = b? )

LetV(x) = Zp a,Vp(x) be some separable polynomial potential. Consider billiard systems
with Hamiltoniang16). By the Maupertiues principld], for a given value of total energies

h, satisfying conditiorh > max.cpV(x), the motions in the potential field(x) inside I”

are reduced to geodesical motions with metrics

(h—V(x)dg2,  (h—V(x)dg?. (20)

It is clear that the billiard systems withifi with metrics(20) are integrable.

Concluding remarksTheorem 3holds also if the boundary of the billiard is the union
of the confocal quadric” = I,, U T, U---UITI,, Iy, = {x € R?, y(c;) = 1}, or
more generally, if the billiard is constrained to some of confocal qguadrics. The same results
can be formulated for billiards constrained on spheres by using geodesical equivalences
established irf29,35] Then systems are orthogonally separable in the spherical elliptic
coordinates. Polynomial potentials separable in elliptic coordinat&’and spheres?

are given by Bogoyavlensk#] and Wojciechowsk{39]. After Rosochatius’s potential
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Vix) = Zle a,-xi_z (se€]33] and Appendix if31]), particular examples of rational poten-
tials are found by Bradef6] and Wojciechowskj39]. Kalnins et al. described separable
rational potentials in terms of certain recurrence relations between potentials of different
degreeg25]. Recently, Fedorov integrated the elliptical billiard with the elastic potential
in the Euclidean spad@1]. Dragovt found the connection between the Laurent potential
perturbations of the elliptical billiards fet = 2 and the Appell hypergeometric functions
[16]. Also recently, the two-dimensional billiards with smooth boundary and additional
irreducible integrals of the third and fourth degree, with a help of the integrable cases of
Goryachev—Chaplygin and Kovalevskaya are given by Koz|ava
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